PSF Reconstruction and Analysis DES Science Verification Data

Bob Armstrong Princeton University

Why should you care about accurate PSF's?

- Get accurate shapes of galaxies to do cosmology!
- My biased view comes from working on doing weak lensing on large surveys, but there are there may be other potential applications:
 - Photometry in crowded regions
 - Low surface brightness or barely resolved galaxies
 - Galaxy morphology
 - Accurate astrometry
- The CFHTLens collaboration rejected 25% of their data due to high star-galaxy shape correlation. Source of systematic error was unknown.

What are the important factors

- Optical distortions, abberations
- Atmosphere
- Astrometry
- Brighter-Fatter
- Edge distortions
- Tree rings
- Charge transfer efficiency
- Sampling
- Chromatic Effects

If we can model some these (WCS, chromaticity) before we try to deal with the PSF, it makes our life easier.

PSF Reconstruction

- Use stars in the field to measure samples of the PSF
- PSF Models
 - Analytic form (shapelet, wavelet, Gaussian)
 - Pixel basis
 - Principal component analysis (PCA)
- PSF Interpolation
 - Polynomial
 - PCA
 - Gaussian process
 - Kriging
- A majority of weak lensing analyses have used some combination of PCA and polynomial interpolation with PCA or pixel basis.

Limitations

- Potentially many free parameters
- How do you choose the optimal number of basis functions
- Polynomial
 - Assume data varies smoothly, cannot capture high frequency variations?
- Limitations to generic PCA
 - Missing data and outliers
 - Does not produce a generative model
 - Assumes Gaussian-Linear model
- Variations to standard polynomial and PCA interpolation can accommodate some of these issues.

How well do we need to know the PSF?

- Depends on particular science application
- Weak lensing Survey requirements:
 - Euclid, HSC, DES, LSST have goals to reach accuracy of size and ellipticity to a few tenths of a percent.

Cosmic shear requirements for DES

Error in PSF ellipticity
$$\left\langle |\delta\epsilon_p|^2 \right\rangle^{\frac{1}{2}} < 2.8 \times 10^{-3} \left(\frac{P_\gamma}{1.84} \right) \left(\frac{R/R_p}{1.2} \right)^2$$
 Error in PSF size $\left\langle \frac{\delta(R_p^2)}{R_p^2} \right\rangle^{\frac{1}{2}} < 6.9 \times 10^{-3} \left(\frac{P_\gamma}{1.84} \right) \left(\frac{R/R_p}{1.2} \right)^2 \left(\frac{0.4}{\left(\langle |\epsilon|^2 \rangle + \langle |\epsilon_p|^2 \rangle \right)^{\frac{1}{2}}} \right)$

For full 5 year DES survey factors reduce to

PSF ellipticity -> 1.2×10^{-3} PSF size -> 3.1×10^{-3} ()

Modeling the optics

- Fairly straightforward to simulate PSF due to telescope misalignment, aberrations using eg. Zemax models.
- Wavefront data can help constrain real data.

Principal Components from Euclid Simulations

Modeling the Atmosphere

- Atmospheric component scales as (Exposure Time)-1/2
- Will be challenging for surveys with high cadence like LSST to model this component. Current focus has been in using simulations to model effects of the atmosphere.

Residual-Residual correlation after polynomial has been subtracted

Image Credit: Heymans et. al. 2012

Star Selection

- Longer exposures mean:
 - More stars are saturated
 - More stars are blended
 - Can push to lower S/N, but need to worry about noisy measurements and bias.
- Can we use barely resolved galaxies from multiple exposures?
- Combine with external information?

More sophisticated interpolation techniques

- The literature is full of potential new methods that can overcome some of the current limitations.
- Have yet to be fully vetted with real data.

Image Credit: Mohammadjavad Valkili

Image Credit: Chang et. al. 2012

The Truth?

- How do you characterize the uncertainty in your estimate of the PSF? Can you predict the posterior and marginalize for science?
- This will depend on how well your basis set can model the PSF.
- Quite a bit of recent work in this area (see Schneider et al. 2014)
- Need to consider computational feasibility.

Probablistic graphical model of shear inference

Image Credit: Schneider et. al. 2014

DES Science Verification Data

- ~200 sq. deg total
- ~10 million galaxies
- Large contiguous region to depth of ~24 in griz

PSF Characteristics

- Seeing larger than expected, but has significantly improved
- Ellipticity quite small!

PSF Model

- We use PSFex written by E. Bertin to model the PSF.
- Use an independent reduction from general processing
- Each CCD is modeled independently
 - Input stars are selected using automated algorithm in size vs.
 mag plane.
 - Remove brightest 3 magnitudes to reduce brighter-fatter effect.
 - Excise regions with known problems.
 - Pixel basis with 2x oversampling.
 - Use 13 arcsec cutouts of stars to avoid truncation.
 - Interpolation uses 2nd order polynomial over CCD to describe spatial variation.

Residual Statistics

- Sufficient number of stars
 - Median ~100 / CCD
- Ellipticity residuals have RMS of 1.7%

Image Credit: Mike Jarvis

Size Residuals as a function of Magnitude

- Deviations below the requirements for SV data
 - Requirements shown for 1" seeing

Residuals as a function of chip position

Deviations as expected and below the requirements

Residuals over Focal Plane

PSF Ellipticity residuals in DES focal plane

Residual Correlation function

- Correlation of residuals for a single-band
 - Bands show cosmic shear requirements
 - Reduced even further if you combine data from different filters.

Principal Component Analysis

- Performed a Principal Component Analysis from the same data to look for common patterns across the focal plane
- Purely empirical model that solves for shapelet coefficients in cells over each exposure.
- Could potentially use to diagnose telescope problems?

Majority of variation due to first few principal components: seeing, constant ellipticity

Long tail due to atmosphere?

Principal Component Comparison

Comparison of whisker pattern shows similarities for tilt

Image Credit: Steve Kent

Principal Component Comparison

Comparison of whisker pattern shows similarities for decenter

Image Credit: Steve Kent

Beyond an Empirical PCA

- The PCA did not show an improvement over simple polynomial fit.
- Did not see anything significant correlation between PC and telescope measurements.
- Can probably do better using information from wavefront sensors.

Using Wavefront Sensors

- Aaron Roodman and Chris
 Davis have been working
 on wavefront models for
 the active optics system.
- Fit of PSF stars using wavefront model.
- Hope to combine this with other methods in the future.

Image Credit: Aaron Roodman

Conclusions

- Many interesting areas for improvement of PSF modeling
 - Combining optical and atmospheric components
 - Probabilistic PSFs
 - New interpolation methods
- PSF modeling for DES Science Verification is in good shape
 - Simple model/CCD works well
 - Close to meeting requirements for 5 year data
 - Working to incorporate additional features in the model
 - Currently using these models to ensure accurate galaxy shapes

Backup